+ -
当前位置:首页 → 问答吧 → 0.0.1中boot.c中的|后是注释吗?这是什么注释格式?

0.0.1中boot.c中的|后是注释吗?这是什么注释格式?

时间:2003-05-11

来源:互联网

rt!

作者: TomCruise   发布时间: 2003-05-11

请问一下,你是不是笔误,我搜索了0.0.1的所有文件,没有boot.c
这个文件。从你说的注解推测,因该是boot.s,而且注解也应该是
在!后吧。这个是at&t汇编语言的注解。

作者: 有影   发布时间: 2003-05-14

下面是文件boot.c的原码




|
| boot.s
|
| boot.s is loaded at 0x7c00 by the bios-startup routines, and moves itself
| out of the way to address 0x90000, and jumps there.
|
| It then loads the system at 0x10000, using BIOS interrupts. Thereafter
| it disables all interrupts, moves the system down to 0x0000, changes
| to protected mode, and calls the start of system. System then must
| RE-initialize the protected mode in it's own tables, and enable
| interrupts as needed.
|
| NOTE! currently system is at most 8*65536 bytes long. This should be no
| problem, even in the future. I want to keep it simple. This 512 kB
| kernel size should be enough - in fact more would mean we'd have to move
| not just these start-up routines, but also do something about the cache-
| memory (block IO devices). The area left over in the lower 640 kB is meant
| for these. No other memory is assumed to be "physical", ie all memory
| over 1Mb is demand-paging. All addresses under 1Mb are guaranteed to match
| their physical addresses.
|
| NOTE1 abouve is no longer valid in it's entirety. cache-memory is allocated
| above the 1Mb mark as well as below. Otherwise it is mainly correct.
|
| NOTE 2! The boot disk type must be set at compile-time, by setting
| the following equ. Having the boot-up procedure hunt for the right
| disk type is severe brain-damage.
| The loader has been made as simple as possible (had to, to get it
| in 512 bytes with the code to move to protected mode), and continuos
| read errors will result in a unbreakable loop. Reboot by hand. It
| loads pretty fast by getting whole sectors at a time whenever possible.

| 1.44Mb disks:
sectors = 18
| 1.2Mb disks:
| sectors = 15
| 720kB disks:
| sectors = 9

.globl begtext, begdata, begbss, endtext, enddata, endbss
.text
begtext:
.data
begdata:
.bss
begbss:
.text

BOOTSEG = 0x07c0
INITSEG = 0x9000
SYSSEG = 0x1000 | system loaded at 0x10000 (65536).
ENDSEG = SYSSEG + SYSSIZE

entry start
start:
mov ax,#BOOTSEG
mov ds,ax
mov ax,#INITSEG
mov es,ax
mov cx,#256
sub si,si
sub di,di
rep
movw
jmpi go,INITSEG
go: mov ax,cs
mov ds,ax
mov es,ax
mov ss,ax
mov sp,#0x400 | arbitrary value >>512

mov ah,#0x03 | read cursor pos
xor bh,bh
int 0x10

mov cx,#24
mov bx,#0x0007 | page 0, attribute 7 (normal)
mov bp,#msg1
mov ax,#0x1301 | write string, move cursor
int 0x10

| ok, we've written the message, now
| we want to load the system (at 0x10000)

mov ax,#SYSSEG
mov es,ax | segment of 0x010000
call read_it
call kill_motor

| if the read went well we get current cursor position ans save it for
| posterity.

mov ah,#0x03 | read cursor pos
xor bh,bh
int 0x10 | save it in known place, con_init fetches
mov [510],dx | it from 0x90510.

| now we want to move to protected mode ...

cli | no interrupts allowed !

| first we move the system to it's rightful place

mov ax,#0x0000
cld | 'direction'=0, movs moves forward
do_move:
mov es,ax | destination segment
add ax,#0x1000
cmp ax,#0x9000
jz end_move
mov ds,ax | source segment
sub di,di
sub si,si
mov cx,#0x8000
rep
movsw
j do_move

| then we load the segment descriptors

end_move:

mov ax,cs | right, forgot this at first. didn't work :-)
mov ds,ax
lidt idt_48 | load idt with 0,0
lgdt gdt_48 | load gdt with whatever appropriate

| that was painless, now we enable A20

call empty_8042
mov al,#0xD1 | command write
out #0x64,al
call empty_8042
mov al,#0xDF | A20 on
out #0x60,al
call empty_8042

| well, that went ok, I hope. Now we have to reprogram the interrupts :-(
| we put them right after the intel-reserved hardware interrupts, at
| int 0x20-0x2F. There they won't mess up anything. Sadly IBM really
| messed this up with the original PC, and they haven't been able to
| rectify it afterwards. Thus the bios puts interrupts at 0x08-0x0f,
| which is used for the internal hardware interrupts as well. We just
| have to reprogram the 8259's, and it isn't fun.

mov al,#0x11 | initialization sequence
out #0x20,al | send it to 8259A-1
.word 0x00eb,0x00eb | jmp $+2, jmp $+2
out #0xA0,al | and to 8259A-2
.word 0x00eb,0x00eb
mov al,#0x20 | start of hardware int's (0x20)
out #0x21,al
.word 0x00eb,0x00eb
mov al,#0x28 | start of hardware int's 2 (0x28)
out #0xA1,al
.word 0x00eb,0x00eb
mov al,#0x04 | 8259-1 is master
out #0x21,al
.word 0x00eb,0x00eb
mov al,#0x02 | 8259-2 is slave
out #0xA1,al
.word 0x00eb,0x00eb
mov al,#0x01 | 8086 mode for both
out #0x21,al
.word 0x00eb,0x00eb
out #0xA1,al
.word 0x00eb,0x00eb
mov al,#0xFF | mask off all interrupts for now
out #0x21,al
.word 0x00eb,0x00eb
out #0xA1,al

| well, that certainly wasn't fun :-(. Hopefully it works, and we don't
| need no steenking BIOS anyway (except for the initial loading :-).
| The BIOS-routine wants lots of unnecessary data, and it's less
| "interesting" anyway. This is how REAL programmers do it.
|
| Well, now's the time to actually move into protected mode. To make
| things as simple as possible, we do no register set-up or anything,
| we let the gnu-compiled 32-bit programs do that. We just jump to
| absolute address 0x00000, in 32-bit protected mode.

mov ax,#0x0001 | protected mode (PE) bit
lmsw ax | This is it!
jmpi 0,8 | jmp offset 0 of segment 8 (cs)

| This routine checks that the keyboard command queue is empty
| No timeout is used - if this hangs there is something wrong with
| the machine, and we probably couldn't proceed anyway.
empty_8042:
.word 0x00eb,0x00eb
in al,#0x64 | 8042 status port
test al,#2 | is input buffer full?
jnz empty_8042 | yes - loop
ret

| This routine loads the system at address 0x10000, making sure
| no 64kB boundaries are crossed. We try to load it as fast as
| possible, loading whole tracks whenever we can.
|
| in: es - starting address segment (normally 0x1000)
|
| This routine has to be recompiled to fit another drive type,
| just change the "sectors" variable at the start of the file
| (originally 18, for a 1.44Mb drive)
|
sread: .word 1 | sectors read of current track
head: .word 0 | current head
track: .word 0 | current track
read_it:
mov ax,es
test ax,#0x0fff
die: jne die | es must be at 64kB boundary
xor bx,bx | bx is starting address within segment
rp_read:
mov ax,es
cmp ax,#ENDSEG | have we loaded all yet?
jb ok1_read
ret
ok1_read:
mov ax,#sectors
sub ax,sread
mov cx,ax
shl cx,#9
add cx,bx
jnc ok2_read
je ok2_read
xor ax,ax
sub ax,bx
shr ax,#9
ok2_read:
call read_track
mov cx,ax
add ax,sread
cmp ax,#sectors
jne ok3_read
mov ax,#1
sub ax,head
jne ok4_read
inc track
ok4_read:
mov head,ax
xor ax,ax
ok3_read:
mov sread,ax
shl cx,#9
add bx,cx
jnc rp_read
mov ax,es
add ax,#0x1000
mov es,ax
xor bx,bx
jmp rp_read

read_track:
push ax
push bx
push cx
push dx
mov dx,track
mov cx,sread
inc cx
mov ch,dl
mov dx,head
mov dh,dl
mov dl,#0
and dx,#0x0100
mov ah,#2
int 0x13
jc bad_rt
pop dx
pop cx
pop bx
pop ax
ret
bad_rt: mov ax,#0
mov dx,#0
int 0x13
pop dx
pop cx
pop bx
pop ax
jmp read_track

/*
* This procedure turns off the floppy drive motor, so
* that we enter the kernel in a known state, and
* don't have to worry about it later.
*/
kill_motor:
push dx
mov dx,#0x3f2
mov al,#0
outb
pop dx
ret

gdt:
.word 0,0,0,0 | dummy

.word 0x07FF | 8Mb - limit=2047 (2048*4096=8Mb)
.word 0x0000 | base address=0
.word 0x9A00 | code read/exec
.word 0x00C0 | granularity=4096, 386

.word 0x07FF | 8Mb - limit=2047 (2048*4096=8Mb)
.word 0x0000 | base address=0
.word 0x9200 | data read/write
.word 0x00C0 | granularity=4096, 386

idt_48:
.word 0 | idt limit=0
.word 0,0 | idt base=0L

gdt_48:
.word 0x800 | gdt limit=2048, 256 GDT entries
.word gdt,0x9 | gdt base = 0X9xxxx

msg1:
.byte 13,10
.ascii "Loading system ..."
.byte 13,10,13,10

.text
endtext:
.data
enddata:
.bss
endbss:

作者: TomCruise   发布时间: 2003-05-14

注意,你看到开头的注解了吗?是boot.s

作者: 有影   发布时间: 2003-05-16

bootsect.s (c) 1991, 1992 Linus Torvalds 版权所有 !

bootsect.s 被bios-启动子程序加载至0x7c00 (31k)处,并将自己移到了地址0x90000(576k)处,并跳转至那里。
但不能盲目地跳转,有些系统可能只有512k的低内存。使用中断0x12来获得(系统的)最高内存等。
并将系统加载到地址0x10000处。注意!目前的内核系统最大长度限制为(8*65536-4096)(508k)字节长,
即使是在将来这也是没有问题的。我想让它保持简单明了。这样508k的最大内核长度应该是足够了。
(尤其是这里没有象minix中一样包含缓冲区高速缓冲,而且尤其是现在内核是压缩的):-)
加载程序已经做的尽量地简单了,所以持续的读出错将导致死循环。只能手工重启。只要可能,通过一次取得整个磁道,加载过程可以做的很快的。



此处为磁盘参数的定义:

许多BIOS的默认磁盘参数表将不能进行扇区数大于在表中指定的最大扇区数
( - 在某些情况下这意味着是7个扇区)后面的多扇区的读操作。由于单个扇
区的读操作是很慢的而且当然是没问题的,* 我们必须在RAM中(为第一个磁盘)
创建新的参数表。我们将把最大扇区数设置为18 - 我们在一个FD 1.44驱动器
上所能遇到的最大值。此值太高是没有任何害处的,但是低的话就会有问题了。
(注:如果是ED 2.88的驱动器,就该把最大扇区数设置为36,后续版本有此设置)

| 1.44Mb disks: sectors = 18
| 1.2Mb disks: sectors = 15
| 720kB disks: sectors = 9

.globl begtext, begdata, begbss, endtext, enddata, endbss

.text begtext:

.data begdata:

.bss begbss:

.text

BOOTSEG = 0x07c0 |bootsect的原始地址,这里大家不会陌生吧;

INITSEG = 0x9000 |呵呵,可爱的boot把自己搬家到这里了;

SYSSEG = 0x1000 |系统加载至0x1000(65536)(64k)段处;


ENDSEG = SYSSEG + SYSSIZE |系统的大小 0x4000(16k)是>=bootsect + 堆栈的长度的任意的值

entry start start:

mov ax,#BOOTSEG |将ds段寄存器置为0x7C0;

mov ds,ax

mov ax,#INITSEG |将es段寄存器置为0x9000(呵呵,搬家了);

mov es,ax

mov cx,#256 |将cx计数器置为256(要移动256个字, 512字节);

sub si,si |源地址 ds:si=0x07C0:0x0000;

sub di,di |目的地址es:di=0x9000:0x0000;

rep |将这段程序从0x7C0:0(31k)移至0x9000:0(576k)处;

movw |共256个字(512字节)(0x200长);

jmpi go,INITSEG |间接跳转至移动后的本程序go处;



go: mov ax,cs |这个时候ax和es现在已经含有INITSEG的值(0x9000);

mov ds,ax |置ds数据段为0x9000

mov es,ax |置es数据段为0x9000

mov ss,ax |置ss数据段为0x9000

mov sp,#0x400 |置堆栈指针INITSEG:0x4000-12处;

|从这里开始打印一些无用的信息

mov ah,#0x03 |读光标的位置;

xor bh,bh |

int 0x10

mov cx,#24

mov bx,#0x0007 |页0,属性7 (normal)

mov bp,#msg1

mov ax,#0x1301 |写字符串,移动光标;

int 0x10

|ok, 我们已经显示出了信息,现在我们要加载系统了(到0x10000处)(64k处),let's go go go!

mov ax,#SYSSEG

mov es,ax |es=0x01000的段

call read_it |读system,es为输入参数;

call kill_motor |啊哦,关闭驱动器马达了。。。

|中断服务int 10h的第13h号功能,在萤幕上输出字串"Loading",这个字串在boot linux时都会首先被看到,相信大家应该觉得很眼熟吧。


mov ah,#0x03

xor bh,bh

int 0x10

mov [510],dx

|大家请注意,为了大家的安全现在进入保护模式 :-)

cli |这个老朋友很熟悉啦,无外呼很温柔的告诉你,现在不能中断了哦,中断被它屏蔽掉了。

|好吧,现在把系统加载到正确的地方!(也就是0x0000)

mov ax,#0x0000

cld | 'direction'=0, movs moves forward

|怎么看boot也像个搬运工,现在又将核心从0x10000处移至0x1000处;

do_move:

mov es,ax | destination segment

add ax,#0x1000

cmp ax,#0x9000

jz end_move

mov ds,ax | source segment

sub di,

sub si,si

mov cx,#0x8000

rep

movsw

j do_move

| then we load the segment descriptors

end_move:

mov ax,cs | 对了,不要忘记先要做这一步哦,不然怎么工作? :-)

mov ds,ax

lidt idt_48 | load idt with 0,0

lgdt gdt_48 | load gdt with whatever appropriate

|打开A20这条线吧,不然1M以上的MEMORY怎么工作呢:-)

call empty_8042
mov al,#0xD1 |在这里发号司令!
out #0x64,al
call empty_8042
mov al,#0xDF |yes sir!打开了!
out #0x60,al
call empty_8042

|好了,如果一切顺利,到这里,就不得不改变一下中断的定义了,我们直接利用INTEL类CPU的保留中断0x20到0x2F不能很好的工作,
|那是因为被IBM最先的原始定义弄乱了,到后来又得没有得到纠正。因此,BISO中的0x08到0x0f还是用内部硬件中断,
|我们只修改8259芯片的中断控制程序。(本人E文水平有限,以下是原文,在后续版本中中断的初始化是放在[arch/i386/kernel/i8259.c]中的)

| well, that went ok, I hope. Now we have to reprogram the interrupts :-(
| we put them right after the intel-reserved hardware interrupts, at
| int 0x20-0x2F. There they won't mess up anything. Sadly IBM really
| messed this up with the original PC, and they haven't been able to
| rectify it afterwards. Thus the bios puts interrupts at 0x08-0x0f,
| which is used for the internal hardware interrupts as well. We just
| have to reprogram the 8259's, and it isn't fun.

mov al,#0x11 |初始化序列;
out #0x20,al |发送给8259A-1
.word 0x00eb,0x00eb |跳转 $+2, jmp $+2
out #0xA0,al |发送给8259A-2
.word 0x00eb,0x00eb
mov al,#0x20 |开始的硬件中断(0x20)
out #0x21,al
.word 0x00eb,0x00eb
mov al,#0x28 |开始的硬件中断 2 (0x28)
out #0xA1,al
.word 0x00eb,0x00eb
mov al,#0x04 | 8259-1 为主
out #0x21,al
.word 0x00eb,0x00eb
mov al,#0x02 | 8259-2 为从
out #0xA1,al
.word 0x00eb,0x00eb
mov al,#0x01 | 8086 双模式
out #0x21,al
.word 0x00eb,0x00eb
out #0xA1,al
.word 0x00eb,0x00eb
mov al,#0xFF | 屏蔽所有的中断
out #0x21,al
.word 0x00eb,0x00eb
out #0xA1,al

| well, that certainly wasn't fun :-(. Hopefully it works, and we
don't | need no steenking BIOS anyway (except for the initial
loading :-). | The BIOS-routine wants lots of unnecessary data,
and it's less | "interesting" anyway. This is how REAL programmers
do it. | | Well, now's the time to actually move into protected
mode. To make | things as simple as possible, we do no register
set-up or anything, | we let the gnu-compiled 32-bit programs do
that. We just jump to | absolute address 0x00000, in 32-bit
protected mode.

mov ax,#0x0001 | protected mode (PE) bit
lmsw ax | This is it!
jmpi 0,8 | jmp offset 0 of segment 8 (cs)

| This routine checks that the keyboard command queue is empty |
No timeout is used - if this hangs there is something wrong with |
the machine, and we probably couldn't proceed anyway. empty_8042:
.word 0x00eb,0x00eb
in al,#0x64 | 8042 status port
test al,#2 | is input buffer full?
jnz empty_8042 | yes - loop
ret

| This routine loads the system at address 0x10000, making sure |
no 64kB boundaries are crossed. We try to load it as fast as |
possible, loading whole tracks whenever we can. | | in: es -
starting address segment (normally 0x1000) | | This routine has to
be recompiled to fit another drive type, | just change the
"sectors" variable at the start of the file | (originally 18, for
a 1.44Mb drive) | sread: .word 1 | sectors read of
current track head: .word 0 | current head track: .word
0 | current track read_it:
mov ax,es
test ax,#0x0fff
die: jne die | es must be at 64kB boundary
xor bx,bx | bx is starting address within segment
rp_read:
mov ax,es
cmp ax,#ENDSEG | have we loaded all yet?
jb ok1_read
ret
ok1_read:
mov ax,#sectors
sub ax,sread
mov cx,ax
shl cx,#9
add cx,bx
jnc ok2_read
je ok2_read
xor ax,ax
sub ax,bx
shr ax,#9
ok2_read:
call read_track
mov cx,ax
add ax,sread
cmp ax,#sectors
jne ok3_read
mov ax,#1
sub ax,head
jne ok4_read
inc track
ok4_read:
mov head,ax
xor ax,ax
ok3_read:
mov sread,ax
shl cx,#9
add bx,cx
jnc rp_read
mov ax,es
add ax,#0x1000
mov es,ax
xor bx,bx
jmp rp_read

read_track:
push ax
push bx
push cx
push dx
mov dx,track
mov cx,sread
inc cx
mov ch,dl
mov dx,head
mov dh,dl
mov dl,#0
and dx,#0x0100
mov ah,#2
int 0x13
jc bad_rt
pop dx
pop cx
pop bx
pop ax
ret
bad_rt: mov ax,#0
mov dx,#0
int 0x13
pop dx
pop cx
pop bx
pop ax
jmp read_track

/*

* This procedure turns off the floppy drive motor, so

* that we enter the kernel in a known state, and

* don't have to worry about it later.

*/

kill_motor:

push dx

mov dx,#0x3f2

mov al,#0

outb

pop dx

ret

gdt:

.word 0,0,0,0 | dummy

.word 0x07FF | 8Mb - limit=2047 (2048*4096=8Mb)

.word 0x0000 | base address=0

.word 0x9A00 | code read/exec

.word 0x00C0 | granularity=4096, 386

.word 0x07FF | 8Mb - limit=2047 (2048*4096=8Mb)

.word 0x0000 | base address=0

.word 0x9200 | data read/write

.word 0x00C0 | granularity=4096, 386

idt_48:

.word 0 | idt limit=0

.word 0,0 | idt base=0L

gdt_48:

.word 0x800 | gdt limit=2048, 256 GDT entries

.word gdt,0x9 | gdt base = 0X9xxxx

msg1:

.byte 13,10

.ascii "Loading system ..."

.byte 13,10,13,10


.text endtext: .data enddata: .bss endbss:

作者: 有影   发布时间: 2003-05-16

就是不明白前面的那个竖条是做什么用的吗

作者: TomCruise   发布时间: 2003-05-16

引用:
最初由 有影 发表
请问一下,你是不是笔误,我搜索了0.0.1的所有文件,没有boot.c
这个文件。从你说的注解推测,因该是boot.s,而且注解也应该是
在!后吧。这个是at&t汇编语言的注解。
仔细看看,我已经回复了。

作者: 有影   发布时间: 2003-05-17

这些竖条后的注解可以通过编译器的过滤吗?

作者: TomCruise   发布时间: 2003-05-17